Scientific data visualization
Using ggplot2

Sacha Epskamp

University of Amsterdam
Department of Psychological Methods

11-04-2014
Hadley Wickham
Hadley Wickham
Evolution of data visualization

- Handdrawn
- Paint
- Excel / SPSS
- Base R
- ggplot2
- shiny / ggVis
Scientific data visualization

- Data and analysis results are best communicated through visualizations
- The leading software for statistical analyses is the statistical programming language R
- The leading R extension for data visualization is ggplot2
- This presentation will quickly teach you strong visualization techniques in R
First use of R

- We will use the environment RStudio for our work in R
- RStudio has 4 panels:
 - Console This is the actual R window, you can enter commands here and execute them by pressing enter
 - Source This is where we can edit scripts. It is where you should always be working. Control-enter sends selected codes to the console
 - Plots/Help This is where plots and help pages will be shown
 - Workspace Shows which objects you currently have
- Anything following a # symbol is treated as a comment!
R workflow

- File → New File → R script
- Write codes in the R script
- Select codes and press control + enter to execute them
Import data

File <- "http://sachaepskamp.com/files/OPdata.csv"
Data <- read.csv(File)
Look at data

head(Data)

<table>
<thead>
<tr>
<th></th>
<th>userID</th>
<th>Measurement</th>
<th>Gender</th>
<th>Age</th>
<th>Study</th>
<th>Work</th>
<th>Neuroticism</th>
<th>Extraversion</th>
<th>Openness</th>
<th>Conscienciousness</th>
<th>Agreeableness</th>
<th>Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>female</td>
<td>24</td>
<td>yes part time</td>
<td></td>
<td>low</td>
<td>low</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>female</td>
<td>24</td>
<td>yes part time</td>
<td></td>
<td>low</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>female</td>
<td>24</td>
<td>yes part time</td>
<td></td>
<td>low</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>female</td>
<td>24</td>
<td>yes part time</td>
<td></td>
<td>low</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td>female</td>
<td>24</td>
<td>yes part time</td>
<td></td>
<td>low</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>6</td>
<td>female</td>
<td>24</td>
<td>yes part time</td>
<td></td>
<td>low</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.375</td>
</tr>
<tr>
<td>2</td>
<td>0.875</td>
</tr>
<tr>
<td>3</td>
<td>1.375</td>
</tr>
<tr>
<td>4</td>
<td>1.875</td>
</tr>
<tr>
<td>5</td>
<td>1.875</td>
</tr>
<tr>
<td>6</td>
<td>0.750</td>
</tr>
</tbody>
</table>
Look at data

```r
names(Data)
## [1] "userID"     "Measurement"
## [3] "Gender"    "Age"
## [5] "Study"     "Work"
## [7] "Neuroticism" "Extraversion"
## [9] "Openness"  "Conscienciousness"
##[11] "Agreeableness" "Stress"
```
Look at data

```r
str(Data)
```

```r
## 'data.frame': 750 obs. of  12 variables:
##  $ userID : int 1 1 1 1 1 1 1 1 1 1 ...  
##  $ Measurement : int 1 2 3 4 5 6 7 8 9 10 ...  
##  $ Gender : Factor w/ 2 levels "female","male": 1 1 1 1 1 1 1 1 1 1 ...  
##  $ Age : int 24 24 24 24 24 24 24 24 24 24 ...  
##  $ Study : Factor w/ 2 levels "no","yes": 2 2 2 2 2 2 2 2 2 2 ...  
##  $ Work : Factor w/ 3 levels "full time","none",..: 3 3 3 3 3 3 3 3 3 3 ...  
##  $ Neuroticism : Factor w/ 2 levels "high","low": 2 2 2 2 2 2 2 2 2 2 ...  
##  $ Extraversion : Factor w/ 2 levels "high","low": 2 2 2 2 2 2 2 2 2 2 ...  
##  $ Openness : Factor w/ 2 levels "high","low": 1 1 1 1 1 1 1 1 1 1 ...  
##  $ Conscienciousness: Factor w/ 2 levels "high","low": 1 1 1 1 1 1 1 1 1 1 ...  
##  $ Agreeableness : Factor w/ 2 levels "high","low": 1 1 1 1 1 1 1 1 1 1 ...  
##  $ Stress : num 0.375 0.875 1.375 1.875 1.875 ...  
```
Look at data

View(Data)
ggplot2

- **ggplot2** (Wickham, 2009) is an implementation of the Grammar of Graphics (Wilkinson, Wills, Rope, Norton, & Dubbs, 2006)
- Very different from base R plotting but also very flexible and powerful
- Uses data frames as input
 - Data must be in **long format**
 - This means that each row is an observation and each column a variable
 - Use `reshape2` to get data in long format
 - Also check out `dplyr` (http://sachaepskamp.com/files/dplyrTutorial.html)
Basics of a plot

- A plot is a 2D representation of data, in which variables can be visualized by, e.g.:
 - Horizontal placing
 - Vertical placing
 - Color
 - Different Lines
 - Line type
 - Size
 - Shape
 - ...

- These are called **aesthetics**

- In **ggplot2** we first set aesthetic mapping of our data using `aes()` inside `ggplot()`
 - Which variables will be mapped to which aesthetics?
install.packages("ggplot2")
library("ggplot2")
ggplot(Data, aes(x = Measurement, y = Stress))

Error: No layers in plot

Error: No layers in plot
Next, we define how these aesthetics are used and what we are plotting:

- Lines
- Points
- Boxplots
- Curves
- …

These are called geometrics (geoms)

We can add these to the plot using +
```r
ggplot(Data, aes(x = Measurement, y = Stress)) + geom_point()
```
ggplot(Data, aes(x = Measurement, y = Stress)) + geom_boxplot()
ggplot(Data, aes(x = Measurement, y = Stress, group = Measurement)) + geom_boxplot()
`ggplot(Data, aes(x = Measurement, y = Stress, group = userID)) + geom_line()`
ggplot(Data,
 aes(x = Measurement, y = Stress, group = userID,
 colour = Age)) + geom_line() +
 facet_grid(Gender ~ .)
Store elements in an object:

g <- ggplot(Data,
 aes(x = Measurement, y = Stress, group = userID,
 colour = Age))

\texttt{g <- g + geom_line()}
\texttt{g <- g + facet_grid(Gender ~ .)}
Print the object to plot:

```r
print(g)
```
Many more graphical options can be added to ggplot calls

- `xlab` Label of x-axis
- `ylab` Label of y-axis
- `ggtitle` Title of plot
- `theme` Many, many graphical settings
- `theme_bw()` A default black and white theme

Use Google!
g + xlab("Time") + ylab("Amount of Stress") +
ggtitle("A very fancy plot") + theme_bw()
$3 + 1$
str(sumData)

'data.frame': 66095 obs. of 5 variables:
$ user_id : num 1456 1713 1837 1845 21167 ...
$ rating : num 0.482 -5.225 -6.639 -0.417 -3.008 ...
$ date_of_birth: Date, format: "2001-06-03" ...
$ grade : num 8 8 8 8 7 8 7 8 8 8 ...
$ gender : chr "f" "m" "m" "f" ...

ggplot(sumData, aes(x = date_of_birth, y = rating)) + geom_point()
ggplot(sumData, aes(x = date_of_birth, y = rating)) + stat_binhex()
ggplot(sumData, aes(x = date_of_birth, y = rating, colour = factor(grade))) + geom_point()
```r
ggplot(sumData, aes(x = date_of_birth, y = rating, colour = factor(grade), fill = factor(grade))) + geom_point() + geom_smooth(col = "black", method = "lm")
```
ggplot(sumData, aes(x = date_of_birth, y = rating, colour = factor(grade), fill = factor(grade))) + geom_point() + geom_smooth(col = "black", method = "lm", formula = y ~ poly(x, 2))
ggplot(sumData, aes(x = grade)) + geom_histogram()
ggplot(sumData,
 aes(x = grade, y = rating, colour = factor(grade))
) + geom_violin()
Onthoud de volgorde van de mollen
Spel: mollenspel
Welk woord hoorde je als laatst?

Luister naar alle woorden. Kies daarna per groep het laatste woord dat je hebt gehoord. Klik voor meer uitleg op de luchtbol in de haven. Daar vind je ook een overzicht van alle groepen en de woorden die daarbij horen.
Binned by item

Score - expected

-1.0
-0.5
0.0
0.5

Rating

Nov 15 Dec 01 Dec 15 Jan 01 Jan 15 Feb 01
More ggplot2
Changes in Fish Activity and Activity Type

Distance Types:
- inadist
- smldist
- lardist
More ggplot2

likert package (Bryer & Speerschneider, 2013)
More ggplot2

sjPlot package (Lüdecke, 2014)
More ggplot2

sjPlot package (Lüdecke, 2014)
More ggplot2

sjPlot package (Lüdecke, 2014)
More ggplot2

eysjPlot package (Lüdecke, 2014)
ggplot2 can create very complex visualizations with minimal codes

- Automatizes convenient things such as
 - Margins
 - Legend

- Documentation: http://docs.ggplot2.org/
Thank you for your attention!

Exercises are on http://sachaepskamp.com/files/ggplot2_exercises.html
References I

